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Abstract

In this paper we investigate the problem of predicting survival time (in days) for
patients diagnosed with high grade gliomas (gliobastoma multiforme) using their
brain MRI studies. To approach this problem, we first reduce the input features
into a compressed representation, learned using an unsupervised 3D convolutional
neural network based autoencoder which is trained to predict its own input. Once
the most informative features are learned, they are further reduced in dimension-
ality using singular value decomposition. We then try a number of regression
based machine learning methods on this reduced data. We observe the best mean
squared error (MSE) of 125048 using K-nearest neighbours. Our observed results
in terms of MSE are close to the state of the art methods as of writing this paper.
However given the regressors’ correlation results and domain knowledge, we con-
clude that using brain MRI data alone in this framework is insufficient to produce
predictions with high correlation.

1 Introduction

Brain tumors have high mortality rates making them one of the deadliest cancers[l1}2]. With respect
to their origin, brain tumors can be either primary (originating from the brain) or metastatic (origi-
nating from other sites). Gliomas (or gliobastoma multiforme) constitute 70% of malignant primary
brain tumors in adults [2]], and are usually classified as High Grade Gliomas (HGG) or Low Grade
Gliomas (LGG). HGG encompasses grade III and IV of the WHO categorization [3]], and exhibits a
rapid proliferating behaviour, with a patient survival time of about one year [2].



Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Computed Tomog-
raphy (CT) are some of the standard radio imaging techniques used for diagnosing abnormalities in
the brain. Due to its improved soft tissue contrast, as compared to plain radiography or CT [4]],
MRI has been extensively employed for diagnosing brain and nervous system abnormalities over
the last few decades [4]. MR images are usually procured in multiple sequences or modalities, de-
pending upon the different excitation and repetition times used during the scan. This enables MRI to
capture distinct structures of interest, by producing noticeably different tissue contrasts [2]. These
include sequences 7T%-weighted, T5-weighted, post-contrast T3 -weighted (711Gq), and T>-weighed
with fluid-attenuated inversion recovery (15 r;q4-). The rationale behind using these four sequences
lies in the fact that different tumor regions may be visible in different sequences, allowing for a more
accurate marking of tumor region.

Recently, the problem of predicting patient survival time (in days) was introduced in the BRATS
2017 competition [5]], as part of the MICCAI 2017 conference. The problem is significant since an
accurate prediction can help in effective treatment, where a low survival period can trigger a more
immediate response in terms of patient care and treatment.

Methods of machine learning (ML) have been applied to medical image analysis for decades, most
prominently in developing computer aided detection/diagnosis systems for various imaging modali-
ties. ML in the form of Deep Learning (DL) have also been adopted in the medical imaging domain,
with studies targeting modalities such as mammography [6]], CT [7] and MRI [8]], for various dif-
ferent tasks such as image classification, and localization and segmentation of abnormalities. In this
work, we apply a combination of DL and ML methods to predict overall survival time (in days) of
patients using the patients’ brain MRI scans.

2 Dataset

The dataset used in this project was part of the BRATS 2017 challenge [S)]. The dataset contains
multi-institutional, clinically-acquired, pre-operative multi-sequence MRI scans of glioblastoma
multiforme (GBM/HGG) and lower grade glioma (LGG), with pathologically confirmed diagnosis
and available overall survival time for most patients. The number of institutions contributing the data
was 19. The scans were acquired in four sequences, which include T} -weighted, T-weighted, post-
contrast T1-weighted (T1¢q), and T>-weighed with fluid-attenuated inversion recovery (Tsriqir)-
The dataset contains 210 patients, out of whom 163 patients had available overall survival data in the
form of a supplementary CSV file. The MRI scans in the dataset are pre-processed, i.e. co-registered
to the same anatomical template, interpolated to the same resolution (1 mm?), and skull-stripped.
The spatial dimensions of a patient datapoint is 240x240x155x4 (height, width, number of slices,
and number of sequences). To keep the computation burden and memory usage low, we resize each
patient volume from 240x240x155 to 120x120x155 using cubic interpolation.

3 Approach

Brain MRI studies are enormously high dimensional 3D volumes. In order to effectively apply
machine learning methods for our task of predicting survival days for the patients, the data must be
compressed into a lower dimensional representation, ideally without losing too much information.
One way to do this traditionally is to use hand crafted features like 3D LBP [9] or 3D Voxel HOG
[LO]. However hand crafted features may not always be the most ideal compact representation of the
input data. Hence in this work we use an autoencoder based on 3D convolutional neural networks,
trained in an unsupervised fashion to automatically learn the most informative features from the
input data. A detailed discussion of this pipeline is followed in the Section[3.1} Once the network
is trained, we split the network and extract the encoder part. The encoder part is then used as an
extracted feature set for our patient data.

After autoencoder feature extraction, we use singular value decomposition (SVD) to reduce that
dimensionality of the extracted features. This step is needed to enable us to feasibly explore a
wide range of ML methods on the dataset. With this dimensionality-reduced feature set, we explore
different regression models. And then finally see if any of these models’ predictions correlate with
the actual data using correlation values.
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Figure 1: Proposed 3D Convolutional Neural Network based architecture for unsupervised feature
learning from brain MRI data.

3.1 Feature extraction

3.1.1 Convolutional neural networks

Convolutional neural networks (ConvNets or CNNs) [[11] are neural networks that are suitable for
processing input of a grid-like topology, e.g, time series data and images. Compared to a traditional
artificial neural network, a ConvNet uses convolution operation as compared to matrix multiplication
in some or all of its layers. In this work we use a 3D ConvNet in the form of an autoencoder archi-
tecture for unsupervised feature extraction from Brain MRI studies. The architecture is illustrated

in Figure|[T]

3.1.2 CNN architecture

For the task of learning the most informative features from the input brain MRI data in an unsu-
pervised fashion, we construct a 19-layer autoencoder based on 3D convolution and pooling layers.
The network is fully convolutional, in the sense that it does not have any fully connected layers at
the end, and hence is compatible with any input shape. The network takes in a full 4D volume of
a patient’s brain MRI study (width, height, number of slices, channels) as input, and tries to recre-
ate or reconstruct its that input by learning kernels in the convolution layers. A usual autoencoder
architecture has the first half of the network compressing the input to a smaller dimension, and the
second part of the network using that compressed representation to reconstruct the original input.
The network consists of six blocks of two convolution layers, where three blocks are in the encoder
section and three in the decoder section. Each block is followed by a pooling layer in the encoder
section or an upsample layer in the decoder section. The network relies entirely on the patient MRI
study, and does not need any supervision in the form of labels (tumor location or segmentation), and
hence is a fully unsupervised network. The hyperparameters used in the network are presented in the
Table|ll A convolution type “same” implies that required zero padding is performed on the input to
the layer to account for output downsampling, while a “valid” convolution implies no zero padding,
leading to downsized output. The number of trainable parameters in the network is 1,472,964.
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Figure 2: Illustration of the feature extraction pipeline. The trained encoder part is used as feature
extractor, which is followed by dimensionality reduction using SVD.



Table 1: 3D fully convolutional neural network based autoencoder

Layer Filter  Stride Conv Input Output
Size Type

Ce_1_1 64x5x5x5 1x1x1 same 120x120x155x4 120x120x155x64
Ce.l2 64x5x5x5 1x1x1 same 120x120x155x64 120x120x155x64
P_1 2x2x2  2x2x2 - 120x120x155x64  60x60x78x64
Ce2.1 32x3x3x3 1x1x1 same  60x60x78x64 60x60x78x32
Ce22 32x3x3x3 1x1x1 same  60x60x78x32 60x60x78x32
P2 2x2x2  2x2x2 - 60x60x78x32 30x30x39x32
Cel3.l 16x3x3x3 1x1x1 same  30x30x39x32 30x30x39x16
Ce32 16x3x3x3 1x1x1 same 30x30x39x16 30x30x39x16
P_3 (features)  2x2x2  2x2x2 - 30x30x39x16 15x15x20x16
Cds3.l 16x3x3x3 1x1x1 same 15x15x20x16 15x15x20x16
Cd32 16x3x3x3 1x1x1 same 15x15x20x16 15x15x20x16
Up-1 2x2x2  2x2x2 - 15x15x20x16 30x30x40x16
Cd2.1 32x3x3x3 1x1x1 same 30x30x40x16 30x30x40x32
Cd22 32x3x3x3 1x1x1 same 30x30x40x32 30x30x40x32
Up-2 2x2x2  2x2x2 - 30x30x40x32 60x60x80x32
Cdl1.1 64x5x5x5 1x1x1 same  60x60x80x32 60x60x80x64
Cd12 64x5x5x5 1x1x1 same  60x60x80x64 60x60x80x64
Up-3 2x2x2  2x2x2 - 60x60x80x64  120x120x160x64
C_Out 4x1x1x6 1x1x1 wvalid 120x120x160x64 120x120x155x4

3.1.3 Feature extraction using trained encoder

Once the ConvNet is trained, we split the network into its encoder and decoder components. The
encoder part is then used for generating compact representations of the patient studies. The final
encoder layer outputs a tensor of size 15x15x20x 16, which is then flattened into a vector f with | f| =
72000. This represents a compression rate of 124x. The feature extraction pipeline is illustrated in

Figure[2]
3.2 Dimensionality reduction

Since the amount of training data is much smaller than the size of the ConvNet extracted feature
(163 vs 72000), we need to further reduce the dimensionality of the features to allow of effective
ML methods application. For this end, we use SVD.

We choose SVD for its numerical stability [12], and even though its computationally expensive, we
only need to perform SVD once for downstream ML methods. The procedure starts by normalizing
the input matrix, X to zero mean and unit variance, given by:

X —
X « a (1)
o
The correlation matrix, C, is then constructed by
XTX
C= )
n—1
where n is the number of patients. Then, we decompose using:
usvt =x (3)
where X is diagonalized and S is the singular values matrix. Using[3]in[2] we get:
VSsuTusvT® S?
C = =V v “)
n—1 n—1



The principal components are then given by

XV =Usvtv=US (5)

From those principal components, the top n components are selected as the new reduced feature set.
For this task, scikit-learn’s SVD implementation is used.

3.3 Regression models pipeline

Having the final reduced feature set for each patient, we apply a number of different ML regression
models. Our work pipeline uses scikit-learn [[13]] and AutoML [[14] Python libraries. The pipeline we
implemented is modular and allows for easy addition of ML regressors by software class inheritance.

For each ML regressor, the pipeline holds out one-fifth of the dataset (33 datapoints) for testing, and
gives the remaining (130 datapoints) for the regressor to train on. The regressor then trains using
5-fold cross validation on the training dataset given to it. The loss function of the pipeline is mean
squared error. It is given as:

1 o,
L= N;(yi—ti)Q (6)

where N is the number of patients, ; is the actual patient survival time and ¢; is the predicted patient
survival time.

To measure the quality of the results we use the Pearson correlation coefficient.

po_ 20t
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The range of R is [-1,1], where -1 indicate a negative linear correlation, 0 no correlation, and 1
positive linear correlation. In this work an R value close to 1 is ideal, whereas a value of O indicates
that we cannot extract information from the regression, regardless of the MSE scores. The pipeline
includes the following regression models: linear regression, KNN regression, logistic regression,
and random forest regression. On top of that, it includes two ensemble based models: gradient
boosting and AutoML.

(7

The library packages that we use in the pipeline come with different parameters. For each model
we find the the best performing parameters by grid searching. For KNN regression we try k values
in increment of 5, and we try to use uniform weighing of neighbors or distance based weighing.
For logistic regression we try an inverse regularization penalty in the range of {0.0001, 0.001, 0.1,
0.2, 0.4, 0.8, 1.6, 3.2}, alongside Lo, norm. For random forest regression we try 1 to 100 trees
in increments of 10. For gradient booster, an ensemble of 100 trees of maximum depth 25 with
least squares loss function is created. We tried Huber loss function (which combines L.1 and L2 for
robustness) but it did not yield performance improvements. The number of estimators and learning
rate was chosen based on [15] where Ridgeway et al argue that the learning rate should be kept small
as gradient booster can overfit contrary to common knowledge. In AutoML we let the automatic
ML library try all of its internal ML methods. AutoML uses Bayesian optimization and Sequential
Model-based Algorithm Configuration (SMAC) on each of its models then builds an ensemble from
those models.

4 Experiments and results

4.1 Training autoencoder

Network architectures and hyperparameters of Same layers are given in Tables[[]and[2] The increas-
ing number of kernels in subsequent layers in the network was inspired by the success of VGG Net
(aka Oxford Net) [[L6]. The final architecture was chosen using a heuristic process, in which a deep
network was first developed that could overfit, which we then regularized using weight decay with
{5 norm.



Table 2: Hyperparameters for the proposed method chosen using a validation set.

Name Hyperparameter Value
e e e weights Xavier [17]
Initialization bias Xavier [17]

Regularization A

0.2
> norm
iterations 50
optimizer ADADELTA
Traini batch_size 2
aining learning rate I, 1.0
p 0.95
€ le 98

Table 3: Results using different regression methods.

Regressor Average MSE of 5-fold testing ~ Average R value of 5-fold testing
Linear Regression 313047.8720 0.0758216
KNN 125048.0946 -0.1133987
Random Forest 142876.4466 -0.1243413
Logistic Regression 198153.7039 0.1151202
Gradient Booster 256059.8549 -0.0892946

MSE of one time training R value of one time training
AutoML 153341.6372 0.0914679

The hyperparameters used in this study that were required for the training process are given in the
Table 2] These were chosen using a validation set consisting of one patient from the database. To
train the network, a total of 210 patient studies were used, including those patients without reported
survival time. The loss function to minimize was chosen to be MSE between the input MRI study
and the reconstructed study. The weights were updated according to (ADADELTA) [18]] method based
on stochastic gradient descent (SGD) which adapts a learning rate using first order information. The
main advantage of the method lies in the fact that it rules out the need for manual tuning of learning
rate and is shown to be robust against noisy gradient values, different model architectures, various
data modalities, and selection of hyperparameters. The proposed network was trained until the
validation error stops improving or the training diverges. It was developed using Tensorflow [19]
with a wrapper library Keras [20] in Python.

4.2 Regression models

Table [3| shows the MSE scores and R values for the regression models in our pipeline. We plot
the Measured vs. Predicted patient survival times for the models as shown in Figure |3} We also
investigate the effect of using features directly computed by the CNN, without further reduction
using SVD, and found that it performs similar compared to using reduced feature set. All methods
run until convergence, with the exception of AutoML, where it was allowed to run for 24 hours,
although we observed that after an hour of searching through hyperparameter space it converges to
its best performing model.

5 Discussion and conclusion

From the results in Table[3|we see that although we obtain MSE values similar to those in the state of
the art [21] the R values are more informative. Our results show that none of the regressors outputs
predictions linear in correlation with the ground truth. To ensure that this result, initially generated
by KNN and linear regression, is not an artifact of a single regression technique, we resorted to
ensemble methods to validate our observations. However, both gradient boosting regression and
random forests gave similar results. Given that any regression technique is highly dependent on op-
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Figure 3: x-axis of each sub-figure indicates the actual survival time of the patient, while the y-axis
indicates the predicted survival time of the patient by the best performing parameter set of each
model.

timal hyperparameter configuration, we used a state of the art optimization package to give further
confidence in the results we obtained using grid search. This approach offers no improvement in
MSE or R values. To exclude the potential effect of dimensionality reduction using SVD we tested
our best regressor on the 72000 dimensional data and obtained similar results. The compressed rep-
resentation produced by the encoder contains enough information for approximate reconstruction of
the input. However the features do not necessarily translate to correlated prediction of survival time.
Gliobastoma multiforme is a complex disease for which brain MRI captures only one manifestation,
at a single point in time. The response of the patient to treatment is contingent on multiple factors
such as genetic traits, treatment quality, age, sex, and medical history. From our empirical results
and the stated domain knowledge we can conclude that in this framework predicting survival using
brain MRI data alone is insufficient to produce predictions with high correlation.

6 Contributions

Our initial project looked at combining gene expression data with brain MRI to classify patients,
however, significant technical challenges in the preprocessing stage of the MRI data made this
project unfeasible. We then focussed on this project where our previous work could be reused. The
whole team worked together on this project. We had almost weekly meetings for the two months
preceding the submission of this report. We were all involved in all the steps of the project, while at
the same time each of us was mainly focused on specific tasks that they were responsible for. An-
mol headed the effort on data retrieval, preprocessing, CNN design, and graphics. Baraa undertook
design and implementation of a modular and scalable pipeline, as well as planning and organizing
the report. Bdour lead the effort on applying linear regression, and plotting regression results for all
classifiers. Ben while contributing to the pipeline design with Baraa, developed the dimensionality
reduction (SVD) part of the pipeline, and investigated ensemble learners. Rimika worked on KNN
regression and contributed the grid search skeleton code for all methods. We enjoyed working to-
gether as a team, and believe that the final state of the project would not have been possible if it were
not for every one of us. The source code and data is available at repositoryﬂ for reproducibility.

"https://bitbucket.org/bcardoen/unlearning
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