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Abstract—Reinforcement learning (RL) have recently become
the framework of choice to develop intelligent agents that can
control various entities inside an environment through learning
by trial and error. One such task where RL algorithms have
been applied is to control simulated robots in a physics-based
environment to achieve a set specific goal. These goals can be
to run, walk, hop, grasp objects and so on depending on the
environment. Recently due to a surge in deep learning (DL) re-
search, RL algorithms have underwent a transformation where
many algorithms were revived by utilizing DL methods in some
of the internal workings of the RL algorithms. This class of
algorithms were named as deep reinforcement learning (DRL).
In this project we compare three different DRL algorithms
with respect to their ability to control a simulated physics-
based robot in an environment. More specifically, we compare
Vanilla Policy Gradient (VPG) or REINFORCE, Trust Region
Policy Optimization (TRPO) and Proximal Policy Optimization
(PPO) algorithms in three different physics-based locomotion
environments HalfCheetah-v2, Hopper-v2, and Walker2d-v2
defined in MuJoCo framework ordered by increasing difficulty.
Through our experiments, we found the PPO exhibited better
performance in all environments in terms of the total reward
gained in an episode. VPG performed worse than PPO but
better than TRPO due to its simplistic policy gradient ap-
proach, though the high variance in training process due to
reliance on absolute episode rewards was evident from the
experiments. We also observed the TRPO’s convergence is
inherently highly predictable, stable, and mostly monotonically
increasing, leading to good convergence guarantees but with
increased training time.

1. Introduction

Locomotion is key for the survival of species in the
animal kingdom. Biologically, it can be defined as an act of
moving from point A to B. Physically, it can be represented
as a change in position of an entity over time. The motion
is usually described in terms of physical quantities such as

distance, velocity, acceleration, and time. In animation, it
is one of the most fundamental motions to be simulated or
modeled using keyframing.

Developing physics-based locomotion models for a
physically-controlled character has been a long standing
research problem in the animation and robotics community
[1]. Inducing robust control and balance to the character
have been challenging due to the under-actuated and high
dimensional nature of the character [2]. Locomotion in
animation (under the umbrella term character animation)
has been handled using many approaches, namely - manual
keyframe based designing, using recorded motion capture
data, algorithmic physics-based methods [3], and more re-
cently controller learning based methods which constitute
some form of machine learning algorithm [4] [5] [6].

Manual keyframe based animation of gaits provides a lot
of control over the character motion, but comes with a huge
cost of manual labour intensive work. Physics-based simula-
tion for character walking animation has shown promise due
to its robustness against unexpected environmental stimuli.
However their use for actual real-time character animation
in practice has been limited mostly to objects populating the
game world, such as furniture, vehicles, hair, clothing, fluids,
and so on [7] [8]. Active simulation is not always employed
for character control in commercial frameworks as the char-
acter movement (walking/locomotion) is commonly handled
with kinematic techniques [3] [8]. Moreover, physics based
controllers tend to provide lesser fine grained control over
developing motion gaits.

Learning based approaches have also shown great
promise. One of the approaches towards learning controllers
for physics-based character control is by using Reinforce-
ment Learning (RL) [3] [8]. RL is a class of machine
learning methods that learn using the idea of trial-and-error.
An “agent” learns to perform a specific task by seeing
numerous “episodes” of trials, in the hope of finding a viable
“trajectory” to navigate through that task. Classical RL has
been applied to this problem with varying degree of success
[9], mostly due to the fact that a generate-and-test approach



is often impractical because of the large number of trials and
very-high dimensional systems [3]. More recently, inspired
by the success of Deep Learning [10] techniques in a variety
of different fields, modified versions of RL algorithms in
the form of Deep Reinforcement Learning (DRL) [11] [12]
[13] [14] [15] [5] [6] have been proposed. Although some of
these recent works applied DRL methods to the problem of
physics-based locomotion [12] [15] [5] [6] using different
physics environments, a single resource which compares
these algorithms on a standard test platform is still not
present to the best of our knowledge.

In this project, we compare some of the recently pro-
posed DRL methods, specifically the Trust Region Policy
Optimization (TRPO), Proximal Policy Optimization (PPO)
and Vanilla Policy Gradients (VPG) for the task of control-
ling an agent in a physics-based environment. For this, we
utilize OpenAI Gym [16] toolkit and MuJoCo [17] as our
physics simulation engine which provides multiple environ-
ments for different agents (biped humanoid, ant, walker2d,
hopper and others). To provide a fair comparison amongst
the algorithms in learning control policies in environments
with varying levels of complexity, we test the methods on
three physics-based environments, namely HalfCheetah-v2,
Walker2d-v2, and Hopper-v2, ordered in increasing levels
of difficulty.

The remainder of the paper is structured as follows:
Section 2 discusses some of the related work. Section 3
provides a detailed background on the RL problem. Experi-
mental setup is described in Section 4. Section 5 outlines the
outcomes of this project and discusses some of the insights
and comments on the performance of the algorithms. Section
6 concludes the paper.

2. Related Work

Computer animation using physics-based locomotion
simulation provides a different approach compared to kine-
matic data-driven or keyframing approaches. One of the
earliest work by Armstrong et al. [18] discussed physics-
based simulation of virtual characters. This lead to a plethora
of literature springing up to apply this idea. Since a thorough
review of the literature is beyond the scope of this report,
we provide a fairly recent review of the field. Yin et al. [2]
proposed a simple physics-based controller for biped loco-
motion. The offline approach allowed interactive designing
of gaits, which were robust against unexpected environmen-
tal stimuli. Coros et al. [19] proposed GENBICON, which
supported multiple different gait styles, and was shown to
generalize towards a variety of different tasks. In later work,
Coros et al. [20] develop a control framework for several
four-legged creatures, incorporating a flexible spine control
model.

Learning based methods, specifically Reinforcement
Learning (RL) were first applied by Grzeszczuk et al. [21]
towards physics-based simulation for physically realistic
animation generation. One of the early seminal works in RL
was by Ronald. J. Williams in [22] called the Vanilla Policy
Gradients (VPG)/REINFORCE family of algorithms, upon

whose ideas many of the state-of-art algorithms today are
based. Recently, after the Deep Learning [23] [10] revolu-
tion, RL algorithms enjoyed renewed interest, and several
methods were proposed [12] [13] [15] [5] [6]. Lillicrap
et al. [12] proposed a continuous version of the Deep Q-
Learning algorithm called Deep Deterministic Policy Gra-
dient (DDPG), and applied the method on the task of legged
locomotion. Schulman et al. [13] build upon DDPG by
proposing an iterative procedure for optimizing policies with
guaranteed monotonic improvement, called the Trust Region
Policy Optimization (TRPO) algorithm. In their later work,
Schulman et al. [15] proposed changes to the original TRPO
algorithm, by removing many hard-to-implement constraints
in the form of a clipped surrogate function. The algorithm
was called Proximal Policy optimization (PPO). Peng et al.
[5] propose a two stage deep RL based dynamic locomotion
controller where a low level controller is responsible for
low-level coordination of the characters limbs for locomo-
tion, and a high level controller is responsible for high-level
task specific objectives such as navigation. Liu et al. [6]
utilize the Deep Q-Learning framework by Mnih et al. [24]
for building schedulers for highly dynamic behaviours.

3. Background

Reinforcement Learning (RL) refers to a family of ma-
chine learning algorithms which learn by trial and error.
More specifically, an RL agent learns to perform actions in
an environment through a series of delayed reward signals.
An RL agent is typically composed of two components: an
agent and an environment as illustrated in Figure 1.

Figure 1. Reinforcement Learning: Agent and Environment

The loop starts by the environment sending a state St
to the agent, which is used the agent to decide upon an
action At to take. The action is fed back into the environ-
ment, which then outputs the new state St+1 and a reward
value Rt+1 back to the agent. The loop continues until the
environment sends a terminal state ending the episode.

Mathematically, the RL problem uses a number of com-
mon terms, which will enable understanding of the sub-
sequent algorithms. Define A be the space of all possible
actions a, S be the space of all possible states s. rt be the
immediate reward signal at time t from the environment after
an action at is performed at state st. Let π be the policy
which determines which action at to take at a particular
state st. V (st) be the value function which predicts the
expected long-term return with discount γ given the agent is



in the state st. A function Q(s, a), similar to to V except it
takes an extra parameter a, outputs the long term expected
reward with discount. Also, define A(s, a) = Q(s, a)−V (s)
called the advantage function which is commonly used in
some algorithms. Intuitively it means how good an action is
compared to the average action for a specific state, where
the average action value is computed by V .

In this project, we compare three different Reinforce-
ment Learning (RL) algorithms, namely Vanilla Policy Gra-
dient (VPG)/REINFORCE, Trust Region Policy Optimiza-
tion (TRPO) and Proximal Policy Optimization (PPO). In
the subsequent subsections we give a brief overview of these
methods.

3.1. Vanilla Policy Gradient (VPG)/REINFORCE

Vanilla Policy Gradient (VPG) or REINFORCE is a gra-
dient based method where the instead of parameterizing the
functions V and Q, the policy function π is parameterized:

πθ(s, a) = P[a|s, θ] (1)

The goal of the algorithm is to find the best set of
parameters θ for the policy, by optimizing a cost function
J(θ) using gradient ascent:

∇θ = α∇θJ(θ) (2)

where ∇θJ(θ) is the policy gradient denoted by:

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)vt] (3)

α is the step-size parameter, the expected return vt
is sampled directly from the episode, which is simply
the total episodic reward, and used as an unbiased sam-
ple of Qπθ (st, at). Policy based methods demonstrate bet-
ter convergence properties, while being effective in high-
dimensional or continuous spaces. However, they typically
converge to local optimum, and evaluation of policy is
typically inefficient and exhibit high variance because the
sampled rewards can be very different from one episode to
another.

3.2. Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) is a policy
gradient algorithm proposed by Schulman et al. [13], which
builds upon the ideas of another algorithm DDPG and tries
to address some of it’s drawbacks, specifically the choice of
step-size. TRPO tries to mitigate this issue using a method
which guarantees that the parameter updates always leads
to policy improvement, or more specifically, the expected
discounted long-term reward η to be always increasing:

η(π) = Es0,a0,...

[ ∞∑
t=0

γtr(st)

]
(4)

Where r(st) is a reward function, and γ is the discount
parameter. For any new policy π, η(π) can be viewed as the

expected return of policy π in terms of the advantage over
π which is the old policy:

η(π) = η(π) + Es0,a0,... π

[
inf∑
t=0

γtAπ(st, at)

]
(5)

η can also be rewritten in the form of discounted visi-
tation frequencies as follows:

η(π) = η(π) +
∑
s

ρπ
∑
a

π(a|s)Aπ(s, a) (6)

Where ρπ is the discounted visitation frequencies, given
as:

ρπ = P (so = s) + γP (s1 = s) + γ2P (s2 = s).... (7)

Optimizing η(π) is hard, hence an approximation is
proposed:

Lπ(π) = η(π) +
∑
s

ρπ(s)
∑
a

π(a|s)Aπ(s, a) (8)

and then the policy is updated using the equation:

π(a|s) = (1− α)π(a|s) + απ′(a|s) (9)

The new policy is constrained using the following the-
orem:

η(π) ≥ Lπ(π)− CDmax
KL (π, π) (10)

where C =
4εγ

(1− γ)2
(11)

C represents the penalty coefficient, whereas Dmax
KL de-

notes the maximum KL divergence of the two parameters for
each of the policy. The concept of KL divergence originated
from information theory, in this case describing information
loss or difference between the parameters π and π. The
equation above implies that the expected discounted long
term reward η will be monotonically improving as the RHS
is maximized. The theorem to prove this is beyond the scope
of this report, and the readers are redirected to the original
paper [13] for a rigorous proof. The final optimization
problem that the algorithm solves is as follows:

maximizeθ
∑
s

ρθold(s)
∑
a

πθ(a|s)Aθold(s, a)

subject to D
ρθold
KL (θold, θ) ≤ δ (12)

This objective function is also called a “surrogate” function
as it contains a probability ratio between current policy
π and next policy π. TRPO successfully addresses the
issue with DDPG, in a way that the performance increases
monotonically, where the subset of region lying within
the constraint is called trust region, hence the name Trust
Region Policy Optimization.



3.3. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) was a follow-up
work by Schulman et al. [15] that addressed many of the is-
sues with TRPO. TRPO despite its guarantees of monotonic
improvement and impressive empirical performance, proved
to be hard to implement due to its KL divergence based
constraints, which either need to be approximated by Fisher
Information Matrix, or by Conjugate Gradient method, ei-
ther of which adds complexity to the computations. Also,
the hard constraints in TRPO leads to slower convergence
times. PPO applies similar constraints as TRPO but in a
computationally effectively, and easy way, by proposing a
clipped surrogate objective function.

The proposed PPO objective is as follows:

LCLIP (θ) = Ê[min(rt(θ)Ât,
clip(rt(θ), 1− ε, 1 + ε)Ât)] (13)

where ε is a hyperparameter, and rt(θ) =
πθ(at|st)
πθold(at|st)

Ât.

The second term modifies the surrogate objective by clipping
the probability ratio rt which removes the incentive for
moving rt outside of the interval [1 − ε, 1 + ε]. Finally
the minimum of clipped and unclipped objective function
is selected.

4. Experiments

For our comparison of the previously detailed methods,
we highlight the experimental methodology that we adopted
below.

4.1. Environment

In this work, we use the physics-based environments
defined in the software package MuJoCo [17], using abstract
interface provided by the OpenAI Gym [16] open-source
library. Since different physics-based simulated robotic task
environments have different mechanics, and in turn, different
complexities, we test the agents in three different environ-
ments, namely HalfCheetah-v2, Hopper-v2, and Walker2d-
v2, ordered in increasing level of difficulty. These envi-
ronments provide different physics mechanics, where the
agent has to learn a varied set of actions (in terms of
different number of joints). We use the standard XML files
supplied by OpenAI1 to create the environment without any
modification to the reward function or the dynamics of the
character. The environments are shown in the Figure 2.

4.2. Setup

The agents were implemented using an open-source
reinforcement learning libary called TensorForce [25] which
is based upon another open-source library called TensorFlow

1. https://github.com/openai/gym/tree/master/gym/envs/mujoco/assets

[26]. TensorForce allows building RL agents using a JSON-
like definition which is highly modular, in the sense that any
component can be plugged in and out of the agent and tested.
This allows high flexibility while experimentation. The code
for this work will be uploaded along with this paper. The
hyperparameters for each of the agent were chosen to be
as close to the original definitions as possible, except for
VPG where the network for the actor network was changed
to a deeper one than the one defined in the original paper.
The exact values of the hyperparameters used are defined
in the Tables 1, 2, 3. We train all the agents for a total of
15000 episodes due to limited computational capabilities.
Due to a hard limit on the number of episodes to train,
it cannot be guaranteed that each agent would be able to
successfully learn how to control the robot in the environ-
ment. This limitation is demonstrated in the Walker2d-v2
environment where none of the agents could learn how to
control the character even in the most rudimentary form. A
thorough analysis of the convergence limits for each agent
is beyond the scope of this project due to hardware and time
limitations.

TABLE 1. HYPERPARAMETER VALUES FOR VPG AGENT

Hyperparameter
Name Value

baseline network [32, 32]

baseline optimizer Adam
baseline optimizer lr 1e−3

num steps 5
optimizer Adam
learning rate (η) 2e−2

discount (γ) 0.99

memory capacity 5000
batch size 20 episodes
update frequency 20 episodes

network [64, tanh, 64, tanh, linear]

TABLE 2. HYPERPARAMETER VALUES FOR TRPO AGENT

Hyperparameter
Name Value

baseline network None

baseline optimizer None
optimizer Adam
learning rate (η) 0.01
discount (γ) 0.99

memory capacity 5000
batch size 20 episodes
update frequency 20 episodes

network [64, tanh, 64, tanh, linear]

4.3. Evaluation Metric

For our comparison, we evaluate the algorithms using
the total reward gained by the agent in the episodes by the



Figure 2. MuJoCo environments on which the algorithms were compared. a) HalfCheetah-v2, b) Hopper-v2, and c) Walker2d-v2.

TABLE 3. HYPERPARAMETER VALUES FOR PPO AGENT

Hyperparameter
Name Value

baseline network [32, 32]

baseline optimizer Adam
learning rate (η) 0.001
num steps 5
optimization steps 50

step optimizer Adam
step optimizer learning rate 0.001

discount (γ) 0.99

memory capacity 5000
batch size 10 episodes
update frequency 10 episodes

network [64, tanh, 64, tanh, linear]

end of the training process. The total reward for an episode
is calculated as follows:

R =

n∑
t=0

rt (14)

where n = number of time steps for the particular
episode.

5. Results and Discussion

The results from our comparison are illustrated in Figure
3. We discuss the results for each algorithm with respect
to every environment, in the subsequent subsections. For
qualitative results, we also release a video of each agent
performing in the environment2.

5.1. HalfCheetah-v2

The HalfCheetah-v2 environment presents a cheetah
robot with 6 joints to be controlled by an agent, with the
ultimate goal to run as fast as it can. In this environment, all
the algorithms were able to train to atleast partially achieve
the task. However, the PPO agent performed the best in
this environment with its fast pace and good running gait.
PPO was followed closely by the VPG agent, which was

2. https://youtu.be/tlNHA7d1aLA

able to make the robot run, but with a lower speed. TRPO
on the other hand, could not learn to move forward during
the limited training period of 15000 episodes, but could only
learn how to walk/hop in place, trying to run forward. This is
expected, since due to the hard constraints applied in TRPO
which allows only monotonically increasing (in terms of
policy performance) updates, it leads to slower convergence
time. The performance of PPO can be explained due to its
simplistic nature compared to TRPO, but still exhibiting
similar theoretical constraints as TRPO, which lead it to
learn and converge faster than all other algorithms. This
is also clear from the convergence plot, where PPO and
VPG converge to similar high reward values by the end
of training, while TRPO although increasing monotonically,
does not converge to a high enough reward. Although we
note that given more time to train TRPO would have def-
initely converged, and might even have performed at par
with PPO. The convergence behaviour of TRPO is stable,
while PPO diverges and falls in terms of total reward per
episode towards the end of training. VPG on the other hand
is highly erratic due to its inherent limitation of the high
variance and reliance on absolute episodic rewards rather
than predicted long-term rewards.

5.2. Hopper-v2

Hopper-v2 environment in OpenAI Gym provides a one-
legged robot whose aim is to hop as far as possible. This is
an intermediate control task, where although the number of
learnable joints are lower, there is complexity in the form of
timing of actions, that play an integral part towards solving
the environment. During our experiments, none of the agents
was able to learn a highly robust gate to solve the environ-
ment and hop very far. Hence we compare the algorithms
in terms of the number of steps they take before the robot
falls on the ground. Using this metric, PPO agent performed
the best, where the agent was able to take atleast 3 steps
before the robot would fall over. However both TRPO and
VPG were not able to learn to control the robot in this
environment, where the TRPO controlled robot would fall
instantaneously, followed by the VPG agent which would
fall after struggling to balance on one step. This is also
evident from the Figure 3 where the convergence plot shows
that both VPG and TRPO get similar rewards for episodes
towards the end of training, while PPO after falling down
still regains a higher reward value during the end of training.
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Figure 3. Convergence plots for each algorithm and environment.

The convergence graph for TRPO however is one of the
most stable.

5.3. Walker-2d

Walker-2d environment presents a biped robot with the
task of developing a walking gait suitable to walk over
an extended period. The environment does not provide any
obstacles to force the agent to develop a robust gait. This
environment was the most complex simulation to be solved
by any of the agent, due to its high-dimensional nature of
joint control. Qualitatively, due to the limited nature of our
hardware and training time, none of the agents were able
to solve this environment within 15000 episodes. Needless
to say the agents must be trained much longer to solve this
environment, for about 50000+ episodes. However for the
sake of comparison we provide the convergence plots of the
algorithms for the limited training time of 15000 episodes.
It can be seen that the PPO agent starts to converge to a
high reward value by the end of training, before falling
down. TRPO expectedly follows a monotonically increasing
convergence path, though it does not come close to the
highest rewards compared to TRPO and PPO. PPO’s plot
is very interesting, in the sense that first it increases, drops,
and then sharply increases again. Qualititavely, it can be seen
that PPO agent controlled biped was at a more advanced
stage of learning to walk than other agents.

6. Conclusion

In this projecct we compare three different deep re-
inforcement learning (DRL) algorithms on three different
physics-based tasks defined inside the MuJoCo environment.
We implement the agents in TensorForce framework using
similar hyperparameter values to provide a fair compari-
son. We also choose environments with varying levels of
complexity in terms of control ability and overall goal to
achieve. In our analysis we found that PPO agent converges
much faster to a high episode reward value compared to
TRPO and VPG. Out of all three, TRPO had the most

ideal and predictable convergence plot due to its strong
constraints on policy improvement, though the time required
to successfully train a TRPO agent was not investigated in
this project due to hardware constraints.
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